Hochgewinn-Hornantenne BBHA 9120 K

Beschreibung:
Die Hornantenne BBHA 9120 K ist eine linear polarisierte Hochgewinnantenne, die speziell für Störfestigkeitsprüfungen in den Radarbändern von 1.2 GHz bis 1.4 GHz bei kurzen Messentfernungen optimiert wurde.

Description:
The BBHA 9120 K is a linear polarized high gain horn antenna for immunity testing at short distances, especially optimized for the radar frequency range 1.2 GHz to 1.4 GHz.

<table>
<thead>
<tr>
<th>Technische Daten:</th>
<th>Specifications:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequenzbereich:</td>
<td>Frequency Range:</td>
</tr>
<tr>
<td>400 MHz - 1.6 GHz</td>
<td></td>
</tr>
<tr>
<td>Isotropgewinn:</td>
<td>Isotropic Gain:</td>
</tr>
<tr>
<td>11-20 dBi (450 MHz < f < 1.6 GHz)</td>
<td></td>
</tr>
<tr>
<td>Antennenfaktor:</td>
<td>Antenna Factor:</td>
</tr>
<tr>
<td>12-20 dB/m</td>
<td></td>
</tr>
<tr>
<td>Impedanz, nominell:</td>
<td>Nominal Impedance:</td>
</tr>
<tr>
<td>50 Ω</td>
<td></td>
</tr>
<tr>
<td>Stehwellenverhältnis SWR max:</td>
<td>Standing Wave Ratio SWR max:</td>
</tr>
<tr>
<td>< 2.5 (450 MHz < f < 1.6 GHz)</td>
<td></td>
</tr>
<tr>
<td>Stehwellenverhältnis SWR typisch:</td>
<td>Standing Wave Ratio SWR typical:</td>
</tr>
<tr>
<td>< 1.5</td>
<td></td>
</tr>
<tr>
<td>Polarisation:</td>
<td>Polarisation:</td>
</tr>
<tr>
<td>linear</td>
<td></td>
</tr>
<tr>
<td>Max. Eingangsleistung:</td>
<td>Max. Input Power:</td>
</tr>
<tr>
<td>1 kW @ 1 GHz</td>
<td>N-Connector female</td>
</tr>
<tr>
<td>0.8 kW @ 1.5 GHz</td>
<td>Max. Input Power:</td>
</tr>
<tr>
<td>1.4 kW @ 1.5 GHz</td>
<td>Option: 7/16 Buchse</td>
</tr>
<tr>
<td>Option: 7/16 Buchse</td>
<td>Option: 7/16 Connector female</td>
</tr>
<tr>
<td>3 dB Öffnungswinkel E-Ebene:</td>
<td>3 dB Beamwidth E-plane:</td>
</tr>
<tr>
<td>19° - 35° (0.9-1.5 GHz)</td>
<td>3 dB Beamwidth H-plane:</td>
</tr>
<tr>
<td>3 dB Öffnungswinkel H-Ebene:</td>
<td></td>
</tr>
<tr>
<td>18° - 33° (0.9-1.5 GHz)</td>
<td></td>
</tr>
<tr>
<td>Länge x Breite x Höhe:</td>
<td></td>
</tr>
<tr>
<td>1.85 x 1.1 x 0.8 m</td>
<td>Length x Width x Height:</td>
</tr>
<tr>
<td>Gewicht:</td>
<td>Weight:</td>
</tr>
<tr>
<td>32.5 kg</td>
<td></td>
</tr>
<tr>
<td>Montage:</td>
<td>Mounting: Flange</td>
</tr>
<tr>
<td>Flansch</td>
<td>Recommended Mast:</td>
</tr>
<tr>
<td>Empfohlener Mast:</td>
<td>AM BBHA 9120 K</td>
</tr>
<tr>
<td>Normen:</td>
<td>General Motors: GM3097</td>
</tr>
<tr>
<td></td>
<td>Ford: EMC-CS-2009</td>
</tr>
<tr>
<td></td>
<td>Standards:</td>
</tr>
</tbody>
</table>
Gain at 1 m measured from Aperture

Antenna Factor at 1 m measured from Aperture
<table>
<thead>
<tr>
<th>Frequency [MHz]</th>
<th>Isotropic gain 1 m Aperture [dBi]</th>
<th>Antenna factor 1 m Aperture [dB/m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>350.00</td>
<td>3.84</td>
<td>17.26</td>
</tr>
<tr>
<td>355.00</td>
<td>4.26</td>
<td>16.96</td>
</tr>
<tr>
<td>360.00</td>
<td>4.84</td>
<td>16.51</td>
</tr>
<tr>
<td>365.00</td>
<td>5.32</td>
<td>16.15</td>
</tr>
<tr>
<td>370.00</td>
<td>5.71</td>
<td>15.87</td>
</tr>
<tr>
<td>375.00</td>
<td>5.79</td>
<td>15.91</td>
</tr>
<tr>
<td>380.00</td>
<td>6.01</td>
<td>15.81</td>
</tr>
<tr>
<td>385.00</td>
<td>6.29</td>
<td>15.64</td>
</tr>
<tr>
<td>390.00</td>
<td>6.40</td>
<td>15.64</td>
</tr>
<tr>
<td>395.00</td>
<td>6.60</td>
<td>15.35</td>
</tr>
<tr>
<td>400.00</td>
<td>7.12</td>
<td>15.14</td>
</tr>
<tr>
<td>405.00</td>
<td>7.67</td>
<td>14.70</td>
</tr>
<tr>
<td>410.00</td>
<td>8.30</td>
<td>14.18</td>
</tr>
<tr>
<td>415.00</td>
<td>8.83</td>
<td>13.75</td>
</tr>
<tr>
<td>420.00</td>
<td>9.37</td>
<td>13.31</td>
</tr>
<tr>
<td>425.00</td>
<td>9.87</td>
<td>12.92</td>
</tr>
<tr>
<td>430.00</td>
<td>10.21</td>
<td>12.68</td>
</tr>
<tr>
<td>435.00</td>
<td>10.49</td>
<td>12.50</td>
</tr>
<tr>
<td>440.00</td>
<td>10.47</td>
<td>12.62</td>
</tr>
<tr>
<td>445.00</td>
<td>10.56</td>
<td>12.63</td>
</tr>
<tr>
<td>450.00</td>
<td>10.82</td>
<td>12.46</td>
</tr>
<tr>
<td>455.00</td>
<td>11.19</td>
<td>12.19</td>
</tr>
<tr>
<td>460.00</td>
<td>11.31</td>
<td>12.17</td>
</tr>
<tr>
<td>465.00</td>
<td>11.19</td>
<td>12.38</td>
</tr>
<tr>
<td>470.00</td>
<td>11.00</td>
<td>12.66</td>
</tr>
<tr>
<td>475.00</td>
<td>11.01</td>
<td>12.74</td>
</tr>
<tr>
<td>480.00</td>
<td>11.15</td>
<td>12.69</td>
</tr>
<tr>
<td>485.00</td>
<td>11.44</td>
<td>12.49</td>
</tr>
<tr>
<td>490.00</td>
<td>11.49</td>
<td>12.53</td>
</tr>
<tr>
<td>495.00</td>
<td>11.31</td>
<td>12.80</td>
</tr>
<tr>
<td>500.00</td>
<td>11.21</td>
<td>12.99</td>
</tr>
<tr>
<td>505.00</td>
<td>11.24</td>
<td>13.05</td>
</tr>
<tr>
<td>510.00</td>
<td>11.54</td>
<td>12.83</td>
</tr>
<tr>
<td>515.00</td>
<td>11.81</td>
<td>12.65</td>
</tr>
<tr>
<td>520.00</td>
<td>12.09</td>
<td>12.45</td>
</tr>
<tr>
<td>525.00</td>
<td>12.20</td>
<td>12.42</td>
</tr>
<tr>
<td>530.00</td>
<td>12.34</td>
<td>12.37</td>
</tr>
<tr>
<td>535.00</td>
<td>12.44</td>
<td>12.35</td>
</tr>
<tr>
<td>540.00</td>
<td>12.51</td>
<td>12.36</td>
</tr>
<tr>
<td>545.00</td>
<td>12.57</td>
<td>12.38</td>
</tr>
<tr>
<td>550.00</td>
<td>12.51</td>
<td>12.52</td>
</tr>
<tr>
<td>555.00</td>
<td>12.21</td>
<td>12.90</td>
</tr>
<tr>
<td>560.00</td>
<td>12.23</td>
<td>12.95</td>
</tr>
<tr>
<td>565.00</td>
<td>12.26</td>
<td>13.00</td>
</tr>
<tr>
<td>570.00</td>
<td>12.32</td>
<td>13.02</td>
</tr>
<tr>
<td>575.00</td>
<td>12.26</td>
<td>13.15</td>
</tr>
<tr>
<td>580.00</td>
<td>11.97</td>
<td>13.52</td>
</tr>
<tr>
<td>585.00</td>
<td>11.57</td>
<td>13.99</td>
</tr>
<tr>
<td>590.00</td>
<td>11.35</td>
<td>14.29</td>
</tr>
<tr>
<td>595.00</td>
<td>11.29</td>
<td>14.42</td>
</tr>
<tr>
<td>600.00</td>
<td>11.53</td>
<td>14.25</td>
</tr>
<tr>
<td>Frequency [MHz]</td>
<td>Isotropic gain [dBi]</td>
<td>Antenna factor [dB/m]</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>860.00</td>
<td>13.72</td>
<td>15.19</td>
</tr>
<tr>
<td>865.00</td>
<td>14.09</td>
<td>14.87</td>
</tr>
<tr>
<td>870.00</td>
<td>14.37</td>
<td>14.64</td>
</tr>
<tr>
<td>875.00</td>
<td>14.43</td>
<td>14.63</td>
</tr>
<tr>
<td>880.00</td>
<td>14.69</td>
<td>14.42</td>
</tr>
<tr>
<td>885.00</td>
<td>14.98</td>
<td>14.18</td>
</tr>
<tr>
<td>890.00</td>
<td>15.35</td>
<td>13.86</td>
</tr>
<tr>
<td>895.00</td>
<td>15.54</td>
<td>13.72</td>
</tr>
<tr>
<td>900.00</td>
<td>15.72</td>
<td>13.58</td>
</tr>
<tr>
<td>905.00</td>
<td>15.84</td>
<td>13.51</td>
</tr>
<tr>
<td>910.00</td>
<td>16.15</td>
<td>13.25</td>
</tr>
<tr>
<td>915.00</td>
<td>16.42</td>
<td>13.03</td>
</tr>
<tr>
<td>920.00</td>
<td>16.56</td>
<td>12.94</td>
</tr>
<tr>
<td>925.00</td>
<td>16.17</td>
<td>13.37</td>
</tr>
<tr>
<td>930.00</td>
<td>15.84</td>
<td>13.75</td>
</tr>
<tr>
<td>935.00</td>
<td>15.70</td>
<td>13.94</td>
</tr>
<tr>
<td>940.00</td>
<td>15.89</td>
<td>13.79</td>
</tr>
<tr>
<td>945.00</td>
<td>16.09</td>
<td>13.64</td>
</tr>
<tr>
<td>950.00</td>
<td>16.05</td>
<td>13.72</td>
</tr>
<tr>
<td>955.00</td>
<td>15.88</td>
<td>13.94</td>
</tr>
<tr>
<td>960.00</td>
<td>15.85</td>
<td>14.02</td>
</tr>
<tr>
<td>965.00</td>
<td>15.77</td>
<td>14.14</td>
</tr>
<tr>
<td>970.00</td>
<td>15.81</td>
<td>14.15</td>
</tr>
<tr>
<td>975.00</td>
<td>16.08</td>
<td>13.92</td>
</tr>
<tr>
<td>980.00</td>
<td>16.21</td>
<td>13.83</td>
</tr>
<tr>
<td>985.00</td>
<td>16.34</td>
<td>13.75</td>
</tr>
<tr>
<td>990.00</td>
<td>16.42</td>
<td>13.71</td>
</tr>
<tr>
<td>995.00</td>
<td>16.40</td>
<td>13.78</td>
</tr>
<tr>
<td>1000.00</td>
<td>16.39</td>
<td>13.83</td>
</tr>
<tr>
<td>1005.00</td>
<td>16.44</td>
<td>13.82</td>
</tr>
<tr>
<td>1010.00</td>
<td>16.35</td>
<td>13.96</td>
</tr>
<tr>
<td>1015.00</td>
<td>16.28</td>
<td>14.07</td>
</tr>
<tr>
<td>1020.00</td>
<td>16.03</td>
<td>14.36</td>
</tr>
<tr>
<td>1025.00</td>
<td>16.02</td>
<td>14.41</td>
</tr>
<tr>
<td>1030.00</td>
<td>16.30</td>
<td>14.18</td>
</tr>
<tr>
<td>1035.00</td>
<td>16.64</td>
<td>13.88</td>
</tr>
<tr>
<td>1040.00</td>
<td>16.77</td>
<td>13.79</td>
</tr>
<tr>
<td>1045.00</td>
<td>16.71</td>
<td>13.89</td>
</tr>
<tr>
<td>1050.00</td>
<td>16.33</td>
<td>14.31</td>
</tr>
<tr>
<td>1055.00</td>
<td>15.89</td>
<td>14.80</td>
</tr>
<tr>
<td>1060.00</td>
<td>15.75</td>
<td>14.98</td>
</tr>
<tr>
<td>1065.00</td>
<td>16.01</td>
<td>14.76</td>
</tr>
<tr>
<td>1070.00</td>
<td>16.50</td>
<td>14.31</td>
</tr>
<tr>
<td>1075.00</td>
<td>16.76</td>
<td>14.09</td>
</tr>
<tr>
<td>1080.00</td>
<td>16.73</td>
<td>14.16</td>
</tr>
<tr>
<td>1085.00</td>
<td>16.92</td>
<td>14.01</td>
</tr>
<tr>
<td>1090.00</td>
<td>17.19</td>
<td>13.78</td>
</tr>
<tr>
<td>1095.00</td>
<td>17.19</td>
<td>13.82</td>
</tr>
<tr>
<td>1100.00</td>
<td>17.10</td>
<td>13.95</td>
</tr>
<tr>
<td>1105.00</td>
<td>16.94</td>
<td>14.15</td>
</tr>
<tr>
<td>1110.00</td>
<td>16.86</td>
<td>14.27</td>
</tr>
<tr>
<td>1115.00</td>
<td>16.82</td>
<td>14.35</td>
</tr>
<tr>
<td>1120.00</td>
<td>16.72</td>
<td>14.48</td>
</tr>
<tr>
<td>Frequency [MHz]</td>
<td>Isotropic gain 1 m Aperture [dBi]</td>
<td>Antenna factor 1 m Aperture [dB/m]</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------------------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>1390.00</td>
<td>17.87</td>
<td>15.21</td>
</tr>
<tr>
<td>1395.00</td>
<td>17.69</td>
<td>15.42</td>
</tr>
<tr>
<td>1400.00</td>
<td>17.74</td>
<td>15.40</td>
</tr>
<tr>
<td>1405.00</td>
<td>17.75</td>
<td>15.42</td>
</tr>
<tr>
<td>1410.00</td>
<td>17.47</td>
<td>15.73</td>
</tr>
<tr>
<td>1415.00</td>
<td>16.99</td>
<td>16.25</td>
</tr>
<tr>
<td>1420.00</td>
<td>16.71</td>
<td>16.56</td>
</tr>
<tr>
<td>1425.00</td>
<td>16.59</td>
<td>16.71</td>
</tr>
<tr>
<td>1430.00</td>
<td>16.69</td>
<td>16.64</td>
</tr>
<tr>
<td>1435.00</td>
<td>16.87</td>
<td>16.49</td>
</tr>
<tr>
<td>1440.00</td>
<td>16.97</td>
<td>16.42</td>
</tr>
<tr>
<td>1445.00</td>
<td>16.96</td>
<td>16.46</td>
</tr>
<tr>
<td>1450.00</td>
<td>16.70</td>
<td>16.75</td>
</tr>
<tr>
<td>1455.00</td>
<td>16.32</td>
<td>17.16</td>
</tr>
<tr>
<td>1460.00</td>
<td>16.05</td>
<td>17.46</td>
</tr>
<tr>
<td>1465.00</td>
<td>15.85</td>
<td>17.69</td>
</tr>
<tr>
<td>1470.00</td>
<td>15.65</td>
<td>17.92</td>
</tr>
<tr>
<td>1475.00</td>
<td>15.43</td>
<td>18.17</td>
</tr>
<tr>
<td>1480.00</td>
<td>15.29</td>
<td>18.34</td>
</tr>
<tr>
<td>1485.00</td>
<td>15.46</td>
<td>18.19</td>
</tr>
<tr>
<td>1490.00</td>
<td>15.84</td>
<td>17.84</td>
</tr>
<tr>
<td>1495.00</td>
<td>16.26</td>
<td>17.45</td>
</tr>
<tr>
<td>1500.00</td>
<td>16.54</td>
<td>17.20</td>
</tr>
<tr>
<td>1505.00</td>
<td>16.87</td>
<td>17.10</td>
</tr>
<tr>
<td>1510.00</td>
<td>16.65</td>
<td>17.15</td>
</tr>
<tr>
<td>1515.00</td>
<td>16.46</td>
<td>17.37</td>
</tr>
<tr>
<td>1520.00</td>
<td>16.25</td>
<td>17.61</td>
</tr>
<tr>
<td>1525.00</td>
<td>16.28</td>
<td>17.61</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frequency [MHz]</th>
<th>Isotropic gain 1 m Aperture [dBi]</th>
<th>Antenna factor 1 m Aperture [dB/m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1530.00</td>
<td>16.57</td>
<td>17.34</td>
</tr>
<tr>
<td>1535.00</td>
<td>16.82</td>
<td>17.12</td>
</tr>
<tr>
<td>1540.00</td>
<td>16.93</td>
<td>17.04</td>
</tr>
<tr>
<td>1545.00</td>
<td>16.94</td>
<td>17.06</td>
</tr>
<tr>
<td>1550.00</td>
<td>17.01</td>
<td>17.02</td>
</tr>
<tr>
<td>1555.00</td>
<td>16.87</td>
<td>17.18</td>
</tr>
<tr>
<td>1560.00</td>
<td>16.33</td>
<td>17.75</td>
</tr>
<tr>
<td>1565.00</td>
<td>15.54</td>
<td>18.57</td>
</tr>
<tr>
<td>1570.00</td>
<td>14.91</td>
<td>19.23</td>
</tr>
<tr>
<td>1575.00</td>
<td>14.47</td>
<td>19.70</td>
</tr>
<tr>
<td>1580.00</td>
<td>14.29</td>
<td>19.90</td>
</tr>
<tr>
<td>1585.00</td>
<td>14.30</td>
<td>19.92</td>
</tr>
<tr>
<td>1590.00</td>
<td>14.43</td>
<td>19.82</td>
</tr>
<tr>
<td>1595.00</td>
<td>14.62</td>
<td>19.66</td>
</tr>
<tr>
<td>1600.00</td>
<td>14.88</td>
<td>19.42</td>
</tr>
<tr>
<td>1605.00</td>
<td>15.16</td>
<td>19.17</td>
</tr>
<tr>
<td>1610.00</td>
<td>15.39</td>
<td>18.97</td>
</tr>
<tr>
<td>1615.00</td>
<td>15.55</td>
<td>18.83</td>
</tr>
<tr>
<td>1620.00</td>
<td>15.80</td>
<td>18.61</td>
</tr>
<tr>
<td>1625.00</td>
<td>15.58</td>
<td>18.86</td>
</tr>
<tr>
<td>1630.00</td>
<td>14.94</td>
<td>19.52</td>
</tr>
<tr>
<td>1635.00</td>
<td>14.04</td>
<td>20.45</td>
</tr>
<tr>
<td>1640.00</td>
<td>13.07</td>
<td>21.45</td>
</tr>
<tr>
<td>1645.00</td>
<td>12.08</td>
<td>22.46</td>
</tr>
<tr>
<td>1650.00</td>
<td>11.01</td>
<td>23.56</td>
</tr>
</tbody>
</table>
Fieldstrength at 1 m from Aperture

- Forward Power:
 - 100 W
 - 200 W
 - 250 W
 - 500 W
 - 1 kW
 - 600 V/m

Frequency [MHz]

- 400
- 600
- 800
- 1000
- 1200
- 1400
- 1600

Fieldstrength [dBµV/m]

- 166
- 168
- 170
- 172
- 174
- 176
- 178

VSWR BBHA 9120 K

Frequency [MHz]

- 400
- 600
- 800
- 1000
- 1200
- 1400
- 1600

VSWR

- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
Angle Attenuation E-plane

<table>
<thead>
<tr>
<th>Angle (Degrees)</th>
<th>Transmission S21 (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

Graphical Representation

- **E-plane**: Graph showing transmission S21 (dB) vs. frequency [MHz].
- **Transmission Levels**: 0 deg - 0dB, 10 deg, 20 deg, 30 deg, 40 deg.
- **Frequency Range**: 900 MHz to 1500 MHz.
Angle Attenuation H-plane

Transmission S_{21} [dB] vs Frequency [MHz]

-90 to 0°
-40 to 0 dB
-35 to 0 dB
-30 to 0 dB
-25 to 0 dB
-20 to 0 dB
-15 to 0 dB
-10 to 0 dB
-5 to 0 dB
0 to 0 dB

Frequency [MHz]
900 1000 1100 1200 1300 1400 1500